九九精品视频观看_亚洲综合视频网_精品一区在线视频_爱射av_黄色片免费在线播放_超碰99在线观看

Chinese

Advisory hotline: 4008-557-528

hot key words: Dongguan skived fin heat sink vendor Shenzhen skived fin heat sink vendor Dongguan PV inverter heat sink PV inverter heat sink vendor Jiangsu skived fin heat sink vendor Custom SVG heat pipe thermal module

3C products are also called information home appliances, which typically mean computers, telecommunications, and consumer electronics. There are a wide variety of products with a huge demand. China has become the worldwide largest 3C consumption market for 3C products. With the enhancement of the financial condition and income of our citizens, there is a higher demand for the quality of electronic products. Companies launch products with better configuration, better performance, andbetter designs in order to satisfy consumers
There are a great number of factors which affect the quality of electronic products and cooling is a factor that could not be neglected. Especially after the development of the "Samsung battery-gate" event in 2016, electronics manufacturers pay more attention to the cooling performance and safety of their products. How to make sure the cooling of an electronic product meet the stringent design requirements? The best approach is to plan for thermal management at the beginning of the product design cycle so as to acquire the optimal cooling solution. Winshare Thermal is an outstanding cooling techniques supplier, who can provide the cooling solutions for IT telecommunication electronics products including mainboard cooling, CPU cooling, graphics card cooling, radio frequency module cooling,RU cooling, game console cooling,VR cooling, IPC cooling, server cooling, central variable frequency air conditioner cooling,TEC cooling, etc.
The target to be achieved by the simulation of the cooling solution:
PCB source temperature ≤100
CPU temperature ≤80℃
Schematic of simulation model and relevant parameters:
(1)

DCDC output

Thermal conductivity:10W/(m*K) Power:5W

CPU chipset

Thermal conductivity:10W/(m*k) Power:10W

PCB MST

Thermal conductivity:15W/(m*K) Power:5W

CPU PCB

Thermal conductivity:15W/(m*K) Power:4W

CPU heat sink

Dimensions: 125*95*6mm, base plate thickness:2mm, fin count: 10pcs, thickness: 0.6mm;Thermal conductivity: AL-extru. 180W/(m*K)

CU block

Dimensions:41*41*4.7, Thermal conductivity:385 W/(m*k)

Thermal grease

Thickness: 0.3mm,Thermal conductivity:3.5W/(m*K)

Soldering approach

Solder paste 4258,Thermal conductivity:48W/(m*k) 0.2mm

 
(2)

Front side of the grille

Dimensions:170*27mm; Open area ratio:0.5

Right side of the grille

Dimensions:35*30 mm; Open area ratio:0.6

Back side of the grille

Dimensions:30*30 mm; Open area ratio::0.7

fan

Dimensions:30*30*10 mm

 
(3)

Top side of mainboard

Dimensions:140*170mm; Thermal conductivity:10W/(m*k); Power:3W

Back side of heat source

0.8W/pcs

Front side of heat source

Left row:0.8W/pcs; right row: 1.2W/pcs;
The Row marked as "2":1.5W/pcs

Heat sink

Dimensions:140*170*4.5mm; Base plate thickness: 2mm; Fin height:2.5mm,
Fin count:10pcs; fin thickness:0.6mm; Thermal conductivity:180W/(m*K)

Thermal grease

Thickness: 0.3mm; Thermal conductivity:3.5W/(m*K)

 
(4)

ottom side of mainboard

Dimensions:140*170mm; Thermal conductivity:10W/(m*k); Power:3W。

Source of inverse

功率:1.5W/pcs

Heat sink

Dimensions:140*170*4.5mm; Base plate thickness: 2mm; Fin height:2.5mm,
Fin count:10pcs; Fin thickness:0.6mm; Thermal conductivity:180W/(m*K)

Thermal grease

Thickness: 0.3mm; Thermal conductivity:3.5W/(m*K)

 
Descriptions of the heat sink cooling solution:

(1) Add an30*10mm axial fan to increase the air flow through RX module;
(2) Modify the copper fins in front of the fan in order to increase system air flow.

Schematic of the simulation model of the overall cooling layout:
Parameters of the copper fins after the modification:

Copper fins

Dimensions:30*12*0.3mm; Inclination: 1.0; Quantity: 30pcs

Material:C1100; Thermal conductivity:385W/(m*K)。

Heat pipe

D6 heat pipe thickness: 3mm with the pressed-tube technique; Heat pipe type: Powder sintered;
Thermal conductivity:10000W/(m*k)

Add a 30*10mm axial fan; the open area ratio of the new fan inlet is 0.7.

Baffle

Dimensions:160*33*0.5mm; Material: SUS

 
CPU fan operating point: Volume flow rate:2.43ft^3/min Pressure:17.47Pa
Schematic of simulated CPU module temperature and air flow distribution:
 Ambient temperature: 40℃; Maximum temperature of the CPU chipset:64.43℃
Schematic of the simulated temperature distribution on the top side of the RX module:

NO.

Maximum temperature

NO.

Maximum temperature

NO.

Maximum temperature

Source 1

59.43

Source 1.7

59.73

Source 3.1

59.59

Source 1.1

59.54

Source 2

60.02

Source 3.2

59.7

Source 1.2

59.66

Source 2.1

60.19

Source 3.3

59.77

Source 1.3

59.73

Source 2.2

60.16

Source 3.4

59.8

Source 1.4

59.76

Source 2.3

59.96

Source 3.5

59.8

Source 1.5

59.77

Source 2.4

59.76

Source 3.6

59.78

Source 1.6

59.76

 Source 3

 59.48

Source 3.7

59.74

Schematic of the simulated temperature distribution on the bottom side of the RX module:
 

NO.

Maximum

NO.

Maximum

Source 4

60.83

Source 4.4

60.95

Source 4.1

60.53

Source 4.5

60.89

Source 4.2

60.92

Source 4.6

60.8

Source 4.3

60.96

Source 4.7

60.67

Fan operating point:
CPU fan: 2.43ft^3/min ,17.47Pa;
RX fan1: 2.23ft^3/min ,18.65Pa;
RX fan2: 2.5ft^3/min ,17.09Pa;
RX fan3:2.22ft^3/min,18.70Pa。
 
Air flow through fan grilles:
CPU grille:2.26ft^3/min;
RX grille1:1.95 ft^3/min;
RX grille2:2.23 ft^3/min;
RX grille3:1.962ft^3/min;
Total: 8.4ft^3/min。
 
Miniature of the overall air flow trajectory from the simulation results:
 
Summary of the simulation results for the cooling solution:

 

CPU maximum temperature
(℃)

Temperature range of the heat source
(℃)

System air flow
(ft^3/min)

Simulation results of the solution

64.43

60.92~59.43

8.4

The results meet the requirements of CPUtemperature less thanand heat source temperature less than 100℃ and the thermal design is complete.

 

The voice of Winshare Thermal: credit and word

Winshare Thermal Ltd. (hereinafter referred to as Winshare Thermal) was founded in 2009. We specialize in the research and development, production and technical services of high power cooling solutions. We are devoted to becoming the leader in the thermal... [See details]

Copyright: Dongguan Winshare Thermal Ltd.

主站蜘蛛池模板: 欧美成人视 | 高清做爰免费无遮网站挡 | 精精国产xxxx视频在线野外 | 国产正在播放 | 8x成人在线电影 | 国产色视频在线观看免费 | 视频一区二区三区在线播放 | 国产毛片aaa一区二区三区视频 | 亚洲一区二区三区日本久久九 | 在线播放免费av | a级在线 | 免费毛片随便看 | 中文字幕极速在线观看 | 精国产品一区二区三区 | 毛片免费观看视频 | 日韩在线毛片 | 丰满年轻岳中文字幕一区二区 | 国产精品免费一区二区 | 久久av免费观看 | 国产一区二区三区黄 | 国色天香综合网 | 欧美成人精品一区 | 久久精品国产99久久久古代 | 午夜影院a | 亚洲成人精品久久 | 精品国产一区二区三区四区阿崩 | 欧美成人黄色 | 国产精品久久久久久久久久10秀 | 天天碰天天操 | 久久精品亚洲精品国产欧美kt∨ | 欧美色大成网站www永久男同 | 欧美成年性h版影视中文字幕 | 国内免费视频成人精品 | 欧美成在线视频 | 日本免费不卡一区二区 | 免费看搡女人无遮挡的视频 | 狠狠色噜噜狠狠狠米奇9999 | 国产精品久久久久久久久久免 | 水卜樱一区二区av | 亚洲午夜一区二区三区 | 国产91大片|